pH-dependent deformations of the energy landscape of avidin-like proteins investigated by single molecule force spectroscopy.

نویسندگان

  • Melanie Köhler
  • Andreas Karner
  • Michael Leitner
  • Vesa P Hytönen
  • Markku Kulomaa
  • Peter Hinterdorfer
  • Andreas Ebner
چکیده

Avidin and avidin-like proteins are widely used in numerous techniques since the avidin-biotin interaction is known to be very robust and reliable. Within this study, we investigated this bond at the molecular level under harsh conditions ranging from very low to very high pH values. We compared avidin with streptavidin and a recently developed avidin-based mutant, chimeric avidin. To gain insights of the energy landscape of these interactions we used a single molecule approach and performed the Single Molecule Force Spectroscopy atomic force microscopy technique. There, the ligand (biotin) is covalently coupled to a sharp AFM tip via a distensible hetero-bi-functional crosslinker, whereas the receptor of interest is immobilized on the probe surface. Receptor-ligand complexes are formed and ruptured by repeatedly approaching and withdrawing the tip from the surface. Varying both pulling velocity and pH value, we could determine changes of the energy landscape of the complexes. Our results clearly demonstrate that avidin, streptavidin and chimeric avidin are stable over a wide pH range although we could identify differences at the outer pH range. Taking this into account, they can be used in a broad range of applications, like surface sensors at extreme pH values.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping the energy landscape of biomolecules using single molecule force correlation spectroscopy (FCS): Theory and applications

We present a new theory that takes internal dynamics of proteins into account to describe forced-unfolding and force-quench refolding in single molecule experiments. In the current experimental setup (Atomic Force Microscopy or Laser Optical Tweezers) the distribution of unfolding times, P (t), is measured by applying a constant stretching force fS from which the apparent fS-dependent unfolding...

متن کامل

Mechanical unfolding studies of protein molecules

Atomic force microscopy (AFM) enables the pick up of a single protein molecule to apply a mechanical force. This technique, called "force spectroscopy," provides unique information about the intermediates and free energy landscape of the mechanical unfolding of proteins. In this review, we introduce the AFM-based single molecule force spectroscopy of proteins and describe recent studies that an...

متن کامل

Model energy landscapes and the force-induced dissociation of ligand-receptor bonds.

We discuss models for the force-induced dissociation of a ligand-receptor bond, occurring in the context of cell adhesion or single molecule unbinding force measurements. We consider a bond with a structured energy landscape which is modeled by a network of force dependent transition rates between intermediate states. The behavior of a model with only one intermediate state and a model describi...

متن کامل

Mapping the energy landscape of biomolecules using single molecule force correlation spectroscopy: theory and applications.

We present, to our knowledge, a new theory that takes internal dynamics of proteins into account to describe forced-unfolding and force-quench refolding in single molecule experiments. In the current experimental setup (using either atomic force microscopy or laser optical tweezers) the distribution of unfolding times, P(t), is measured by applying a constant stretching force f(S) from which th...

متن کامل

Stretching single-domain proteins: phase diagram and kinetics of force-induced unfolding.

Single-molecule force spectroscopy reveals unfolding of domains in titin on stretching. We provide a theoretical framework for these experiments by computing the phase diagrams for force-induced unfolding of single-domain proteins using lattice models. The results show that two-state folders (at zero force) unravel cooperatively, whereas stretching of non-two-state folders occurs through interm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2014